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Optimization and (meta)heuristics 1/4

… is a branch of mathematics and computational 
science that studies methods and techniques 
specially designed for finding the “best” solution of 
a given “optimization” problem  

OptimizationOptimization

a given optimization  problem. 

Such problems aim to minimize or maximize one or 
more objective functions based on one or more 
dependent variables, which can take integer or real 
values, and subject to a set of equality or 
inequality constraints. 

Optimization and (meta)heuristics 2/4

• Linear Programming 

• Integer Programming

Q d i  P i

Traditional optimization methodsTraditional optimization methods

• Quadratic Programming

• Nonlinear Programming

• Stochastic Programming 

• Dynamic Programming

• Combinatorial Optimization 

Optimization and (meta)heuristics 3/4

• Passing over local optimal solutions 

Difficulties faced by traditional Difficulties faced by traditional 
optimization methodsoptimization methods

• The risk of divergence

• Handling constraints

• Numerical difficulties related to 
computing first or second order derivatives 
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Optimization and (meta)heuristics 4/4

• Heuristic and metaheuristic techniques were 
proposed in the early 70’s. 

(Meta)Heuristic methods(Meta)Heuristic methods

proposed in the early 70 s. 

• Unlike exact methods, (meta)heuristic methods 
have a simple and compact theoretical support, 
being often based on criteria of empirical nature.

• These issues are responsible for the absence of 
any guarantee for successfully identifying the 
optimal solution.

Heuristic optimizationp

What is a heuristic ?What is a heuristic ?

Heuristic optimization 1/7

• A heuristic is an alternative optimization 
methods able to determine not a perfectly 

faccurate solution, but a set of good quality 
approximations to exact solution. 

• Heuristics, were initially based essentially on 
experts’ knowledge and experience and aimed 
to explore the search space in a particularly 
convenient way. 



4

Main characteristicsMain characteristics

Heuristic optimization 2/7

• A heuristic is designed to provide better 
computational performance as compared to 
conventional optimization techniques, at the 
expense of lower accuracy. 

• The ‘rules of thumb” underlying a heuristic are 
often very specific to the problem under 
consideration. 

• Heuristics use domain-specific representations. 

Types of heuristicsTypes of heuristics

Heuristic optimization 3/7

• Uninformed or blind search strategies are 
applied with no information about the search 
space, other than the ability to distinguish 
between an intermediate-state and a goal-between an intermediate state and a goal
state. 

• Informed search strategies use problem-
specific knowledge, such as an evaluation 
function that assesses either the quality of 
each state in the search space, or the cost of 
moving from the current state to a goal-state.  

Uninformed search strategiesUninformed search strategies

Heuristic optimization 4/7

(basically non-heuristic)

• Depth First Search

• Breadth First Search

• Uniform Cost Search
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Informed search strategiesInformed search strategies

Heuristic optimization 5/7

Best First SearchBest First Search

Among all possible states at one level, the 
algorithm chooses to expand the most 
“promising” one in terms of a specified rule.

Informed search strategiesInformed search strategies

Heuristic optimization 6/7

Beam SearchBeam Search

BeS is defined based on BrFS, which is used 
to build the search tree. At each level, all new 
states are generated and the heuristic functionstates are generated and the heuristic function 
is computed for each state that is inserted in a 
list ordered by heuristic function values. The 
list is of limited length - “beam width”. This 
limits the memory requirements, but the 
compromise risks to pruning out the path to the 
goal-state.

Informed search strategiesInformed search strategies

Heuristic optimization 7/7

A* search algorithmA* search algorithm

The A* search algorithm uses a BeFS strategy,The A  search algorithm uses a BeFS strategy, 
and a heuristic function that combines two 
metrics: the cost from the origin to the current 
state (or the cost-so-far) and an estimation of 
the cost from the current state to a goal-state 
(or the cost-to-goal).



6

Metaheuristics and metaheuristic 
methods

Metaheuristics and metaheuristic methods 1/11

What are metaheuristics ?What are metaheuristics ?

• The term metaheuristic was proposed by 
Glover at mid-80s as a family of searching 
algorithms able to define a high level heuristic 

d t id th h i ti f b ttused to guide other heuristics for a better 
evolution in the search space. 

• The most attractive feature of a metaheuristic 
is that its application requires no special 
knowledge on the optimization problem to be 
solved (see the concept of general problem 
solving model). 

Metaheuristics and metaheuristic methods 2/11

Types of metaheuristicsTypes of metaheuristics

• Simulated annealing

• Tabu search

• Evolutionary computation 

• Ant colony algorithm

• Differential evolution

• Harmony searchy p
techniques

• Artificial immune systems

• Memetic algorithms

• Particle swarm 
optimization

y

• Honey-bee colony 
optimization

etcetera
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Metaheuristics and metaheuristic methods 3/11

Simulated AnnealingSimulated Annealing
 Data: initial approximation X0, initial temperature T, number of iteration

for a given temperature nT.
 Optimal solution: Xbest ← X0.
 WHILE {stopping criterion not met}

 n = 0; i = 0;
 WHILE (n < nT) DO WHILE (n < nT) DO

 choose a new approximation Y
 accept or reject the new approximation based on the

Metropolis rule: Xi+1 = G(Xi,Y,T)
 update optimal solution: if Xi+1 is better than Xbest, then

Xbest ← Xi+1

 next n-iteration (n ← n+1)
 update temperature T
 next T-iteration (i ← i+1)

Metaheuristics and metaheuristic methods 4/11

TabuTabu SearchSearch

 Data: length of the Tabu list LT, number of intermediate solutions N.

 Initialization: approximation X, Tabu list TABU={X}.

 Optimal solution: Xbest ← X.

 WHILE {stopping criterion not met}
 prepare the Tabu list: if Length(TABU) = LT, then delete the oldest

item from the list.
 generate N new aproximations in the neighborhood of X and select

the best candidate-solution Y which is not TABU.
 update current approximation X ← Y and add it in the Tabu list:

Add(TABU,X).
 update optimal solution : if X is better than Xbest , then

Xbest ← X

Metaheuristics and metaheuristic methods 5/11

Evolution StrategyEvolution Strategy
 Data: number of parents μ and offsprings λ (λ = k· μ).

 Initialization: create initial population P = {Pi}, i=1 … λ, and initialize
the best solution Best ← void.

 WHILE {stopping criterion not met}
 evaluate P and update the best solution Best evaluate P and update the best solution, Best.
 reproduction stage: select μ fittest individuals from P and create

parent-population, R = {Rj}, j=1 … μ.
 mutation stage: apply stochastic changes to parents and create

k = λ / μ offsprings for each parent:

[ R = {Rj}, j=1… μ ] → [ Q = {Qi}, i=1… λ ]

 Evolution stage: replace the current population with the mutated
one:

[ Pi = Qi, i=1 … λ ]
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Metaheuristics and metaheuristic methods 6/11

Genetic AlgorithmsGenetic Algorithms
 Data: population size N, crossover rate ηc and mutation rate ηm

 Initialization: create initial population P={Pi}, i=1…N, and initialize the best
solution Best ← void.

 WHILE {stopping criterion not met}
 evaluate P and update the best solution Best.
 initialize offspring population: R ← void.
 create offsprings: create offsprings:

FOR k = 1 TO N / 2 DO
 selection stage: select parents Q1 and Q2 from P, based on fitness.
 crossover stage: use crossover rate ηc and parents (Q1;Q2) to

create offsprings (S1; S2).
 mutation stage: use mutation rate ηm to apply stochastic changes

to S1 and S2 and create mutated offsprings T1 and T2.
 add T1 and T2 to offspring population:

R  ← R   { T1 and T2 }.
 replace current population P with offspring population R: P ← R.
 elitism: replace the poorest solution in P with the best solution in Best.

Metaheuristics and metaheuristic methods 7/11

Differential EvolutionDifferential Evolution
 Data: population size parents N, weighting factors α, β.

 Initialization: create initial population P={Pi}, i=1…N.

 Evaluate current population P and store the fittest individual as Best.

 WHILE {stopping criterion not met}

FOR i = 1 TO N DOFOR i = 1 TO N DO

 select two different individuals Xr1 and Xr2, other than Xi .

 apply mutation: Xi’= Xi + α·( Xr1 –Xr2).

 apply crossover: Xi’’= Xi + β·( Xi –Xi’).

 evaluate Xi’’ and replace Xi with Xi’’ anytime when
Fitness (Xi’’) > Fitness (Xi).

 update the best solution Best.

Metaheuristics and metaheuristic methods 8/11

Immune AlgorithmsImmune Algorithms
 Data: population, clonal and replacement size N, M, Nrep.
 Initialization: create initial population P.
 Evaluate affinities for antibodies in current population P.
 WHILE {stopping criterion not met}

 clonal selection: clone the first M antibodies from P, with highest
affinity. Number of clones for an antibody is proportional to itsy y p p
affinity. Number of clones in the proliferation pool Q is N.

 mutation: apply stochastic changes to clones from the proliferation
pool Q, with mutation rate inversely proportional to their affinity.

 replacement: evaluate affinities for mutated antibodies and replace
the worst Nrep clones from population Q with randomly generated
antibodies.

 elitism: evaluate new created antibodies and replace the worst
antibody from Q with the best one from P.

 next generation: replace current population with the one from the
proliferation pool: P ← Q.
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Metaheuristics and metaheuristic methods 9/11

Particle Swarm OptimizationParticle Swarm Optimization
 Data: population size N, personal-best weight α, local-best weight β, global-best

weight γ, correction factor ε.
 Initialization: create initial population P.
 WHILE {stopping criterion not met}

 select the best solution from the current P: Best.
 select global-best solution for all particles: BG.
 apply swarming: apply swarming:

FOR i = 1 TO N DO
 select personal-best solution for particle Xi: Bi

P.
 select local-best solution for particle Xi: Bi

L.
 compute velocity for particle Xi:

FOR j = 1 TO DIM DO
 generate correction coefficients: a = α · rand() ; b = β · rand() ;

c = γ · rand().
 update velocity of particle Xi along dimension j:

Vij = Vij + a · (Bij
P –xij) + b · (Bij

L –xij) + c · (Bj
G –xij)

 update position of particle Xi: Xi = Xi + ε · Vi

Metaheuristics and metaheuristic methods 10/11

Ant Colony OptimizationAnt Colony Optimization
 Data: population size N, set of components C = {C1, …, Cn}, evaporation rate evap.
 Initialization: amount of pheromones for each component PH = {PH1, … , PHn}; best

solution Best
 WHILE {stopping criterion not met}

 initialize current population, P = void.
 create current population of virtual solutions P:

FOR i = 1 TO N DO
f ibl l i create feasible solution S.

 update the best solution, Best ← void.
 Add solution S to P: P ← P  S

 Apply evaporation:
FOR j = 1 TO n DO

PHj = PHj · (1 – evap)

 Update pheromones for each component:
FOR i = 1 TO N DO

FOR j = 1 TO n DO
 if component Ci is part of solution Pj, then update pheromones for this

component: PHj = PHj + Fitness(Pj)

Metaheuristics and metaheuristic methods 11/11

Honey Bee Colony OptimizationHoney Bee Colony Optimization
 Data: size of populations: - drones (ND), broods (NB) and genetic pool (NP);

initial queen’s speed Smax; crossover rate ηc and mutation rate ηm

 Initialization: create initial population Drones with ND individuals, and
select the best drone as the Queen.

 WHILE {stopping criterion not met}
 create the genetic pool: use Drones population and select NP

i di id l i Si l t d A li t t l b dindividuals using a Simulated Annealing-type acceptance rule, based
on the queen’s speed S, and gradually reduce S.

 crossover: apply arithmetic crossover between Queen and successively
selected drones from the genetic pool, until a population of NB broods
(offsprings) is created.

 mutation: apply arithmetic mutation to randomly selected broods
(offsprings).

 update the Queen: if any brood is better than the Queen, update the
Queen.

 selection: use broods and, based on a selection criterion, create the new
population of Drones.
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Applications of (meta)heuristic pp ( )
methods in power systems

Applications 1/36

Types of applicationsTypes of applications

• Load assessment and profiling

• Network reconfiguration

R ti l i• Reactive power planning

• System security analysis

• State estimation

• Distributed generation

any many others ….

Load assessment and profilingLoad assessment and profiling
Peak load estimationPeak load estimation

 + • Dataset: hourly load profiles

• Problem: find the approximant

Applications 2/36
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• Problem: find the approximant 
(analytical) that best fits the daily peak 
load using as input different 
combinations of data from the dataset.

• Approach: Genetic Programming & 
Symbolic Regression.

• Solution-inputs: peak loads form 
days d-7, d-6 and d-1 and the  number 
of the reference day in the year. 
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Comparison of the GP&SR approach to an 
ANN-MLP model

Function approximation

(GP&SR):

Applications 3/36

Estimation errors 

(GP&SR and ANN-MLP):

Load assessment and profilingLoad assessment and profiling
Load profiling (1)Load profiling (1)

• Dataset: hourly load profiles

Applications 4/36

Dataset: hourly load profiles

• Problem: load profile clustering and typical load 
profiles generation.

• Approach: Affinity Control inspired from Immune 
Algorithms and SOFM.

• Solution: portfolio of typical load profiles. 

Affinities between LPs and affinity degrees

Affinities between 

TLPs and 

metered LPs:
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Applications 5/36

Control function:
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Global affinity degrees and the control 
function during the growing phase

Applications 6/36

Results

Applications 7/36

Load assessment and profilingLoad assessment and profiling
Load profiling (2)Load profiling (2)

• Dataset: hourly load profiles

Applications 8/36

Dataset: hourly load profiles

• Problem: load profile clustering and typical load 
profiles generation.

• Approach: Honey bee mating optimization 
algorithm.

• Solution: portfolio of typical load profiles. 
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Average distances between LP vs. Affinities

Average distances 
LP-TLP
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Fitness functions:
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Applications 10/36

Network reconfigurationNetwork reconfiguration

The network reconfiguration problem arises 
usually in distribution systems and aims at 
changing the network topology by altering the

Applications 11/36

changing the network topology by altering the 
position and status of sectionalizing switches. 

A complex combinatorial problem.
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Network reconfigurationNetwork reconfiguration

subject to:

Problem formulation (RPP included)
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Applications 12/36

subject to:

NTtVVV ttt ,...,1maxmin 

NLlII adml ,...,1max1, 

NTtQQN tKt ,...,1max 
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- Voltage constraints:

- Line capacity constraints:

- Capacitor constraints:

Network reconfiguration (1)Network reconfiguration (1)

• Dataset: network topology, network data, load data.

• Problem: determine the optimal combination of 
opened sectionali ing s itches and the optimal RPP

Applications 13/36

opened sectionalizing switches and the optimal RPP.

• Approach: Ant Colony Optimization.

• Solution: optimal configuration of the network that 
minimize power losses. 

Network reconfiguration (1)Network reconfiguration (1)

Solution representation:

- Reconfiguration problem:

- A candidate solution will be represented by a 

Applications 14/36

vector consisting of the load sections that will be 
opened to obtain the radial configuration of the 
network.

- RPP problem:

- A candidate solution will be a vector, which shows 
how many capacitor banks are placed in each 
node of the network. 
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Network reconfiguration (1)Network reconfiguration (1)
Test system:

Applications 15/36
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Network reconfiguration (1)Network reconfiguration (1)
Solution:
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Network reconfiguration (2)Network reconfiguration (2)

• Dataset: network topology, network data, load data.

• Problem: determine the optimal combination of 
opened sectionali ing s itches and the optimal RPP

Applications 17/36

opened sectionalizing switches and the optimal RPP.

• Approach: Particle Swarm Optimization (network 
reconfiguration) and Immune Algorithm (RPP).

• Solution: optimal configuration of the network that 
minimize power losses. 
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Network reconfiguration (1)Network reconfiguration (1)

Solution representation:

A did t l ti d t t l f i di

Applications 18/36

A candidate solution encodes two m-tuples of indices. 
The first m-tuple indicates the feeders in the system 
where the sectionalizing switches should be opened, and 
the second m-tuple shows the line sections on each 
feeder where the switches must be turned off. 

Network reconfiguration (2)Network reconfiguration (2)

Example

14

16

18

20

5

5

2
5

5

53
5

2555

5

5
5

5

55
• The same test 

system.

Applications 19/36
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solution

• Comparable 
execution time.

Reactive Power PlanningReactive Power Planning

Reactive power control:

- generator voltage control, 

- transformer tap control and

Applications 20/36

transformer tap control and 

- fixed or controllable VAR sources. 

In distribution systems: Reactive Power Compensation 
(RPC) through power factor correction. 
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Reactive Power Planning Reactive Power Planning 

• Dataset: network topology, network data, load data.

• Problem: determine the optimal location and number 
of capacitors in the net ork

Applications 21/36

of capacitors in the network.

• Approach: An enhanced Particle Swarm 
Optimization algorithm.

• Solution: optimal reactive power compensation that 
minimize power losses. 

Reactive Power Planning Reactive Power Planning 

The enhanced Particle Swarm Optimization algorithm.

At each iteration a particle should try to mimic not only the 

Applications 22/36

best positions so far, but also other successful positions of 
itself and other particles in the current population.
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Reactive Power Planning Reactive Power Planning 

Comparison with other 2 algorithms.

Run # GA IA PSO
1 2.6421 2.6206 2.6161
2 2.6368 2.6206 2.6155

Table 1 – Values of objective functions after 10 runs of three searching algorithms.

Applications 23/36

2 2.6368 2.6206 2.6155
3 2.6376 2.6217 2.6153
4 2.6343 2.6173 2.6126
5 2.6279 2.6196 2.6136
6 2.6280 2.6198 2.6126
7 2.6302 2.6209 2.6071
8 2.6275 2.6197 2.6209
9 2.6400 2.6203 2.6128

10 2.6416 2.6215 2.6120
Mean 
value

2.6346 2.6202 2.6139
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System security analysisSystem security analysis

System equivalents are a good solution to 

Applications 24/36

y q g
simplify the on-line analysis of present day 
wide-area power systems used in assessing 
system security.

• Dataset: network topology, network data, load data.

System security analysisSystem security analysis

Applications 25/36

• Problem: determine the optimal structure of the REI 
equivalent.

• Approach: Genetic Algorithm.

• Solution: How to group nodes in the REI equivalent ? 

System security analysisSystem security analysis

REI equivalent optimization

REI bus IPSEPS BNs

Applications 26/36

REI bus

REI bus
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System security analysisSystem security analysis

Solution representation (IEEE 57 test system):

Genes 2 3 1 3 2 2 2 3 1 2 4 1 4 2 3

Applications 27/36

Bus # 2 3 4 5 6 8 9 10 11 12 13 14 16 17 58

REI node # 1: group (4, 11, 14)

REI node # 2: group (2, 6, 8, 9, 12, 17)

REI node # 3: group (3, 5, 10, 58)

REI node # 4: group (13, 16)

100
1

1 1 ,

,,






 

 

NI

i

NC

j
ref

ji

eq
ji

ref
ji

U

UU

NINC
FO

Objective function:

System security analysisSystem security analysis
Results (IEEE 57 test system):

Case
# REI
nodes

A 2

Applications 28/36

E 3
H 4
L 5
15 15

Optimal solution:
REI node # 1: group (4, 11, 14)
REI node # 2: group (2, 6, 8, 9, 12, 17)

REI node # 3: group (3, 5, 10, 58)
REI node # 4: group (13, 16)

State estimationState estimation

• New applications for SE are largely based on 

Applications 29/36

pp g y
Synchronized Phasor Measurement Units 
(SPMU).

• A hybrid solution which uses both traditional 
and SPMU is better in terms of costs. 
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• Dataset: network topology, network data, SCADA 
measurements, PMU measurements.

State estimationState estimation

Applications 30/36

• Problem: determine the optimal location of PMU 
measurements

• Approach: Genetic Algorithm.

• Solution: Buses where PMU measurements must be 
located.

State estimationState estimation

Solution representation (IEEE 14 test system):

A chromosome consists of M blocks, each one associated to a PMU. A block 

describes the binary code of the bus where the PMU is placed. 

Applications 31/36

A possible solution for a 2 PMUs placement-problem may use bus number 6 

and 9, and the chromosome describing this solution will have the structure:

00 11 11 00 11 00 00 11

State estimationState estimation

Error surface for the case of 2 PMUs

Applications 32/36
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Distributed generationDistributed generation

Present day distribution systems are facing 
d h i th t t f t diti l

Applications 33/36

deep changing that transforms traditional 
design for passive operation into new concepts 
centered on distributed generation (DG) and a 
more active role of end-users. 

Optimal design of multiple energy hubs Optimal design of multiple energy hubs 

ENERGY HUB

electricity electricity

• Dataset: inputs and outputs 
of the energy hub, output 
loads, parameters of 
conversion units.

Applications 34/36

natural gas

biomass
heating

cooling
INPUTS

OUTPUTS

Stirling
engine

Absorbtion
   chiller

Compression
     chiller

• Problem: determine the 
optimal input structure to 
supply the output loads.

• Approach: Genetic 
Algorithm.

• Solution: Inputs of the 
energy hub.

Optimal design of multiple energy hubs Optimal design of multiple energy hubs 
Solution representation

eWpreW ,

e

e
egCOP

Applications 35/36

A chromosome with 3 real coded genes:

prW

eCOP feW

e

t
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Optimal design of multiple energy hubs Optimal design of multiple energy hubs 

    prpreprobj dWkWWkF  1,

The objective function:

Applications 36/36

prepr WWF ,1 

prdWF 2

k

where:

- the primary energy function

- error term equal to the difference between the 

primary energy computed on two independent ways

- weighting coefficient

Conclusions

During the last two decades numerous (meta)heuristic 
approaches have been devised and developed to solve 
complex optimization problems. 

Conclusions 1/1

ConclusionsConclusions

Their success is due largely to their most important 
features:

• simplicity,
• the need of minimal additional knowledge on the 

optimization problem and 
• a highly numerical robustness of algorithms. 
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