## **CI & A**

## ANNS FOR CLASSIFICATION AND RECOGNITION

BASIC ALGORITHMS

### **General context**

### What is classification ?

... learning the similarities and differences between instances of objects from a population of non-identical objects.

### General context Two stages:

**Classification** - the system learns the general characteristics of classes based on specific characteristics of instances.

**Accognition** - the system overlap the characteristics of an instance over the characteristics of known classes and identifies the class to which that instance belongs.

### General context Two learning types:

Supervised learning – applies whenever the class to which each input pattern (an instance of classified objects) is associated to is known in advance.

**Unsupervized learning** - applies when the class to which each input pattern (an instance of classified objects) is associated to is not known in advance.

### Similarity / Dissimilarity measures APPROACH

Beginning with a set of input vectors  $X = \{x^{(1)}, x^{(2)}, \dots, x^{(M)}\}$ , with a common structure  $x^{(m)} = (x_1^{(m)}, x_2^{(m)}, \dots, x_N^{(m)})$ .

The aim: to separate  $\ {\it K}$  classes – denoted X<sub>1</sub>, X<sub>2</sub>, … , X<sub>K</sub> – each one being characterized by a prototype z<sup>k</sup> (*k*=1,...,*K*) .

Finally, based on the K prototypes  $z^k$  each vector  $x^{(m)}$  is associated to one of the K classes.

















### **Classification algorithms**

- 1. K nearest neighbor algorithm
- 2. C-mean algorithm
- 3. ISODATA Algorithm
- 4. Kohonen networks (self-organization)
  - 4.1. VQ networks Vector Quantization
    4.2. LVQ networks Learning Vector Quantization
  - 4.3. SOFM networks Self Organizing Feature Maps

# K nearest neighbor algorithm

### **Principle**

The algorithm selects the first K vectors already classified (the value of K is specified in advance), that are closest to the current vector, and the latter is classified into the dominant class associated with the K reference vectors.

### K nearest neighbor algorithm Initialization

The algorithm starts with the learning data set consisting of vectors  $\{x^{(1)}, x^{(2)}, \dots, x^{(M)}\}$  and the number of classes *C* that must be separated. When one of these vectors  $x^{(m)}$  is associated to a class *c*, the notation : Class(m) = c

is used. After randomly rearranging vectors  $\mathbf{x}^{(m)}$  from the learning data set, the first C vectors are associated each one to the C classes.

# K nearest neighbor algorithm

The actual classification

For each of the remaining vectors  $\mathbf{x}^{(C+1)}, \mathbf{x}^{(C+2)}, \dots, \mathbf{x}^{(M)}$  the following steps are done: (a)calculate distances to the already classified vectors;

(b) vectors are listed in ascending order of their distances and the first *K* vectors in this list are considered;

(c) determine the dominant class of these *K* vectors and associate the current vector to this class.









## K nearest neighbor algorithm

#### Remarks

- (a) requires in advance specification of the number of classes to be separated;
- (b) classification results are influenced by the order of vectors presentation;
- (c) the very principle of nearest neighbor compares the current vector with vectors at the limit of the areas associated to each class.
- (d) the algorithm does not determine characteristic vectors or prototypes.

### C – mean algorithm Principle

**C-means algorithm** introduces for the first time the concept of **prototype** or **center-vector** or **encoding vector**, which describes globally a class. Thus, for a class **c**, the prototype  $z^{(c)}$  is calculated as the mean of the *n(c)* vectors that were associated to that class:

$$\mathbf{z}^{(c)} = \frac{1}{n(c)} \sum_{m=1}^{M} \mathbf{x}^{(m)}$$

∀ m, with property Class (m) = c

## C – mean algorithm Initialization

The algorithm starts from the training data set { $x^{(1)}$ ,  $x^{(2)}$ , ...,  $x^{(M)}$ } and the number of classes C < M to be separated. After a random rearranging of the training data set, first C patterns are assigned arbitrarily to the C classes, and vectors  $x^{(1)}$ , ...,  $x^{(C)}$  become prototypes  $z^{(1)}$ , ...,  $z^{(C)}$ .

### C – mean algorithm Actual classification

Further, each of the remaining M - C training patterns is associated to a class based on minimum distances from the C prototypes.

Next, class-prototypes are recalculated and new class-association are done.

The process repeats until - in two successive iterations - prototypes of classes does not change or changes in a measure considered insignificant.

### C – mean algorithm Precision quantification

The assessment of the size of the space area covered by each class - standard deviation of the class prototype from vectors in the training data set associated to this class:

 $\sigma_c^2 = \frac{1}{n(c)} \sum_{m=1}^M \|\mathbf{x}^{(m)} - \mathbf{z}^{(c)}\|^2 \quad \forall m, \text{ with property } Class(m) = c :$ 

The total square deviation:

 $\sigma_T^2 = \sum_{c=1}^C \sigma_c^2$ 

is a measure of classification accuracy .









## C – mean algorithm

#### 7. Stopping condition:

If prototypes have insignificantly changed, i.e.:

 $||\mathbf{z}^{(c)}-\mathbf{w}^{(c)}||<\epsilon \text{ for all classes }c=1,...,C$  then the algorithm ends. Elsewhere, new prototypes are

stored: for a = 1 to C do  $\mathbf{r}^{(c)} = \mathbf{w}^{(c)}$ 

for c = 1 to C do  $\mathbf{z}^{(c)} = \mathbf{w}^{(c)}$ and the algorithm returns to step 4.

### C – mean algorithm Remarks

- (a) requires in advance specification of the number of classes to be separated;
- (b) convergence is not guaranteed;
- (c) better results than the K nearest neighbor algorithm
- (d) produces good results, especially for clearly separable classes.