CI & A

ARTIFICIAL NEURAL NETWORKS - **ANN**S

THE MULTILAYER PERCEPTRON

General context

- Classical neural models that used formal neurons were not provided with an automatic learning algorithm.
- The proposal of using hidden units / neurons and learning through error back-propagation led to the Multilayer Perceptron - MLP.

Generalized Delta Rule

The error back-propagation algorithm proposed by Rumelhart and McClelland in 1986 is sometimes called Generalized Delta Rule (notation "Delta" comes from the Greek letter Δ).

Generalized Delta Rule Learning / Training Data Set

Variables			<i>a</i>
х	y	2	Jay

A table used to define the learning data set for the MLP; the case for 3 inputs -x, y and z – and 1 output – f(x,y,z).

Weights initialization

Weights are initialized with random values, usually chosen in the range (-1, 1).

Generalized Delta Rule

Hypothesis used to apply the algorithm

(i) the MLP-type neural network uses hidden units / neurons;

(ii) activation functions of hidden and output units are considered continuous and differentiable;

(iii) if applicable, output values are scaled within appropriate limits with respect to the activation function.

Generalized Delta Rule 2 main stages

 \Box Forward propagation of input pattern $x^{(m)}$ to calculate the actual output $o^{(m)}$.

DError back-propagation: actual output $o^{(m)}$ is compared to the desired one $d^{(m)}$ and the error term $e^{(m)} = o^{(m)} - d^{(m)}$ is propagated back into the network – from the output layer to the input layer – by adjusting weights with quantity $\Delta w^{(m)}$, based on the least square error principle.

Generalized Delta Rule

Clause 1

For each input – output pattern *m* of the learning data set, the correction of weights w_{ij} - noted $\Delta^{(m)}w_{ij}$ – for connection between unit *j* and unit *i* in the lower layer is proportional with an error term $\delta_j^{(m)}$ associated to unit *j*:

$$\Delta^{(m)} w_{ij} = \eta \cdot \delta_j^{(m)} \cdot o_i^{(m)}$$

where η is a coefficient called *learning rate*.

Generalized Delta Rule Clause 2

If unit *j* is in the output layer, the error term $\delta_j^{(m)}$ is calculated based on the deviation between the actual $o_j^{(m)}$ and the desired $d_j^{(m)}$ output values and the derivative of the activation function *f* of unit *j* with respect to the net input for pattern *m*, denoted *net*_{*j*}^(m):

 $\delta_j^{(m)} = \left(d_j^{(m)} - o_j^{(m)} \right) \cdot f' \left(net_j^{(m)} \right)$

Generalized Delta Rule

Clause 2 - continued

If unit *j* is in the hidden layer, being linked with synaptic connections to units *k* in the output layer, the error term $\delta_j^{(m)}$ is proportional to the sum of all of error terms associated to output units *k*, modified by the weights of those connections w_{jk} and the activation function derivative with respect to net input $net_j^{(m)}$:

 $\int_{\mathcal{S}_{j}} \delta_{j}^{(m)} = \left(\sum_{k} \delta_{k}^{(m)} \cdot w_{jk}\right) \cdot f'\left(net_{j}^{(m)}\right)$

Generalized Delta Rule
Clause 3
The Generalized Delta Rule is based on the
principle of square error minimization; this
error describes the square deviation
between actual and desired values at the
output of the network:

$$E^{(m)} = \frac{1}{2} \sum_{j=1}^{J} (d_j^{(m)} - o_j^{(m)})^2$$

Generalized Delta Rule
Principle
The error back-propagation by
Generalized Delta Rule corresponds
to a minimization of error E by a
gradient method:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \cdot \nabla \mathbf{E} \ (\mathbf{w}^t) = \mathbf{w}^t - \eta \cdot \Delta \mathbf{w}^t$$

i.e.:
 $\mathbf{w}_{ij}^{t+1} = \mathbf{w}_{ij}^t - \eta \cdot \frac{\partial E}{\partial w_{ij}} \Big|_{\mathbf{w}_i} = \mathbf{w}_{ij}^t - \Delta \mathbf{w}_{ij}^t$

If you drop the index *m* that shows the number of the pattern in the learning data set, and consider the general case of a network with NK units on the output layer, the error for one of the learning pattern is:

$$E = \frac{1}{2}\sum_{k=1}^{N\!\!K} \left(\boldsymbol{o}_k - \boldsymbol{d}_k\right)^2$$

$$w_{ij} = 2 \cdot random() - 1;$$

 $i = 1,...,I; \quad j = 1,...,J; \quad k = 1,...,K)$

 $y_j = 0;$ for i = 1 to I do $y_j = y_j + w_{ji} \cdot x_i$ // Forward propagation in the second layer for k = 1 to K do

 $o_k = 0;$ for j = 1 to J do $o_k = o_k + v_{kj} \cdot y_j$

Convergence acceleration procedures

- (i) optimization of the network weights initialization,
- (ii) stabilization of the weights adjusting process,
- (iii) accelerate the convergence by applying more efficient optimization techniques and
- (iv) selecting a network architecture to ensure best performance.

Convergence acceleration-Weights initialization

(iii) Nguyen – Widrow procedure :

define parameter:

then initialize weights using: $w_{y} = \frac{\beta}{\|w^{*}\|} \cdot w_{y}^{*}$

where:

 $[w^*] = \{w^*_{11}, \dots, w^*_{N}\}$

 $\beta = 0.7 \cdot J^{\frac{1}{I}}$

Convergence acceleration– Adding a momentum term Aim: damping trajectory oscillations on the surface error. Solution: introduction within the weights adjustment formula of a "momentum" term proportional to movement speed (the correction value from the previous iteration). $\mathbf{z}^{t+1} = \mathbf{z}^{t} - \eta \cdot \nabla E(\mathbf{z}^{t}) + \mu \cdot (\mathbf{z}^{t} - \mathbf{z}^{t-1})$ or: $z_{\mathcal{M}}^{t+1} = z_{\mathcal{M}}^{t} - \eta \cdot \frac{\partial E}{\partial z_{\mathcal{M}}} \Big|_{\mathbf{z}_{\mathcal{M}}^{t}} + \mu \cdot (z_{\mathcal{M}}^{t} - z_{\mathcal{M}}^{t-1})$

Convergence acceleration– Adding a momentum term

•at the beginning of training, when weights corrections are relatively large, ensures moving in the general direction of error decreasing, avoiding "capture" in local minima; •the momentum term contributes to damping oscillations and smoothing trajectory of successive approximations on the error surface.

Convergence acceleration– Learning rate

Progressive reduction of the learning rate

•In the initial stage, a great learning rate is recommended: the movement on the error surface occurs with large steps, which allows overcoming local minima.

•After getting close to the minimum: reducing the value of the learning rate allows the stabilization of the searching process around this minimum, reducing the risk of surpassing

Convergence acceleration– Learning rate

Principles:

•If in two successive iterations derived $\partial E/\partial w$ retains the sign (i.e., the error *E* is still falling), the learning rate should be increased to accelerate the approach to the minimum; •If in two successive iterations derived $\partial E/\partial w$ changes its sign (i.e., the error *E* is starting to grow), the learning rate should be decreased to return to the decreasing slope.

Convergence acceleration– Rprop learning function

RProp – Resilient Propagation

Principles:

RProp algorithm does not use values of derivatives $\partial E/\partial z_{ps}$ but only their signs. It uses one coefficient δ_{ps} for each weight z_{ps} which changes its value, based on the evolution of the signs error function derivatives.

Stopping criteria

Criterion of maximum number of learning cycles

- T_{max} too low: capture in locala minima;
- T_{max} too high: network specializing on the learning data set (over-training or over-learning).
- Consequence: modest values for T_{max} and off-line tests.

Stopping criteria

Criterion of the test data set

The initial learning data set is divided in: •The training data set •The test data set

The learning stage uses the training data set and learning is stopped when, after a fixed number of consecutive of learning cycles, the error on the test data set begins to increase.