Cl & A

ARTIFICIAL NEURAL
NETWORKS - ANNs

THE MULTILAYER PERCEPTRON

General context

- Classical neural models that used
formal neurons were not provided
with an automatic learning
algorithm.

- The proposal of using hidden
units / neurons and learning
through error back-propagation
led to the Multilayer Perceptron
- MLP.

General context
MLP architecture

Output layer

| Hidden layer

Input layer

General context

Learning = creation of internal

representations associated to input
information.

4e

3 | C2=avE
| [] 0 | E=met (Cl)& C2

How? By weights adjustment.

Generalized Delta Rule

The error back-propagation
algorithm proposed by Rumelhart
and McClelland in 1986 is
sometimes called Generalized
Delta Rule (notation “Delta”
comes from the Greek letter A).

Generalized Delta Rule
Learning / Training Data Set

_Variables

Sy
— . Atable used to define the learning
1 data set for the MLP; the case for 3
inputs—x, y and z — and 1 output —
1 fixyz).

Weights initialization

Weights are initialized with random

values, usually chosen in the range
(-1, 1).

Generalized Delta Rule

Hypothesis used to apply the
algorithm

(i) the MLP-type neural network uses
hidden units / neurons;

(ii) activation functions of hidden and
output units are considered continuous and
differentiable;

(iii) if applicable, output values are scaled
within appropriate limits with respect to the
activation function.

Generalized Delta Rule
2 main stages

QForward propagation of input pattern x(m
to calculate the actual output o™,

OError back-propagation: actual output
o(M is compared to the desired one d™ and
the error term e(™ = oM - d(M js
propagated back into the network — from
the output layer to the input layer — by
adjusting weights with quantity Aw(™),
based on the least square error principle.

Generalized Delta Rule
Explanation: (@) unit j is in the output layer
(b) unit j is in the hidden layer

ok

Generalized Delta Rule

Clause 1

For each input — output pattern m of the
learning data set, the correction of weights
w;; - noted A(™Mw;; — for connection between
unit j and unit / in the lower layer is propor-
tional with an error term §(™ associated to
unit j:

NS 77-(3‘}(’”) -0,(m

where 7 is a coefficient called learning rate.

Generalized Delta Rule

Clause 2
If unit j is in the output layer, the error
term §(™ is calculated based on the
deviation between the actual o™ and the
desired d™ output values and the
derivative of the activation function f of
unit j with respect to the net input for
pattern m, denoted net;(™:

5= (a 0 o) £ ler 77

Generalized Delta Rule
Clause 2 - continued

If unit j is in the hidden layer, being linked
with synaptic connections to units K in the
output layer, the error term §(™ is
proportional to the sum of all of error terms
associated to output units k , modified by
the weights of those connections wy, and
the activation function derivative with
respect to net input net,(m:

iy R A , i
‘\erll _| :*‘tt m) S f |:”‘,£Irm. +

k

Generalized Delta Rule
Clause 3

The Generalized Delta Rule is based on the
principle of square error minimization; this
error describes the square deviation
between actual and desired values at the
output of the network:

5 ((.’J(m) - 05”7))2

[~

Fim) —

| =

5

Generalized Delta Rule
Architecture

Generalized Delta Rule
Principle

The error back-propagation by

Generalized Delta Rule corresponds

to a minimization of error E by a

gradient method:

witl=wi—pn-VE (W')=w -7 Aw!

Generalized Delta Rule
Principle - continued

If you drop the index m that shows the
number of the pattern in the learning
data set, and consider the general case of
a network with NK units on the output
layer, the error for one of the learning
pattern is:

1M 2

E=—_2lag—dy!
2 Kl

Generalized Delta Rule
Weights updating - v,

BE do,

Dnet
:Iok—dkl. L3

:|Ok—dk|-f'|?3é'f.k|- =
& avﬂc

vy,
=lo, —d |- ' net, o

error term 9,

) Av, =7 oo

Generalized Delta Rule
Weights updating - w;

Ey N
o =2 log —dy b o =2 oy —dy) S ety) Dncty _
dwy ;] dwy 3wy
g . doy
=;_,.‘Ok7dk‘ N "’M!’k"vﬂc'g=

L i

error term d;,

NE Ao NE
=[25k'vﬂ:]' L =[25»,'m}f'(”é‘ﬁj)

k=l 2 Wy k=l

N
=54, ACEIE _

[r.{ g "ﬂJ Fnt) % g hwy =73, 7,
e——

error term d

=}

nei i_
Ay

Generalized Delta Rule
Logistic Sigmoid function

1
Activation function: Jlx) = P

... and its derivative:

fimy I) o) 14 1
o [l-%—e(_m)]g - [1+e'(_’m’:']2 - [1Jre=."7:rr+£:1']2

——1 —7‘1 = 1xi—) |2— Ixl. - ixi
4 [1+e(-x+a)]2’fx ixi = fla 1= six]

Generalized Delta Rule
Logistic Sigmoid function - continued
Hypothesis: it is considered that the MLP uses
only logistic sigmoid — type activation functions.

oF 1+1 *
=loy —dy o, -ll-o,)0, VJ-Z =va -0 log—dy bag ll-g;)a

av,, i

NE
e :{Z\o&—dk\ ay - 1-ag) vﬁ:| a;-l=a;) %

Py =

N

ot hal _ _ 1_

W =y 77'|::_,'°& dy a1 oﬁl-vj,c:| o; -0, | 2
k=l

Error back-propagation
algorithm — the basic form

1. Definition of MLP network architecture: number of
units in each layer (I, J, K) and the learning data set
{xm, dM} m = 1, ..., M. Definition of the number
of training cycles: C,.y.

2. Definition of network parameters: learning rates for
weights v and w, denoted n, and n,.

3. Initialization of network weights with random
values in the range (-1, 1):

Vi =2 - random() — 1;
w; =2 - random() —1;

(G=1,.0; j=1,.,J; k=1,..K).

Error back-propagation

algorithm — the basic form
4. Weights updating:

for c =1 to C,,,, do.
form =1 to M do.
// Forward propagation in the first layer
forj=1toJdo
y;=0;
fori=1ltoldoy,=y;+w;- X
// Forward propagation in the second layer
for k =1 to K do
o, =0;
forj=1toJdoo,= 0.+ V-

Error back-propagation

algorithm — the basic form

forj=1toJdo
// Weight adjustment for the 2-nd layer
for k =1 to K do

V=Vt Aafm! — o,)'Ok Al=og) v,
// Weight adjustment for the 1-st layer
fori=1to I do

Ly fm} J
Wy =W+, T Ed}”' —oy) oy =0y) vy|op -0y) ™
il

5. The network was trained on the M patterns in Cp,.,
cycles; its characteristics were embedded in the
weights v, and wj;.

Convergence acceleration
procedures

(i) optimization of the network weights
initialization,

(i) stabilization of the weights adjusting
process,

(iiN) accelerate the convergence by applying
more efficient optimization techniques
and

(iv) selecting a network architecture to
ensure best performance.

Convergence acceleration—
Weights initialization

(i) Standard procedure: initialize weights with
random, small values in the range (-1, 1)
or (-0.5, 0.5);

(ii) Russo’s rule:

24 24
—— W, = —
I VoI
where 1 — number of input connections of

the unit.

Convergence acceleration—
Weights initialization
(iii) Nguyen — Widrow procedure :

1

define parameter: pB=07.J1

then initialize weights using: "+

where: L] =6, Lo w¥,l

Convergence acceleration—
Adding a momentum term

Alm: damping trajectory oscillations on the
surface error.

Solution: introduction within the weights
adjustment formula of a “momentum” term
proportional to movement speed (the
correction value from the previous

iteration).
Z*l=z'—n-VEEz)+ u- -z
Ml ot aE

o Zm TZm N HH- (2= Zpg)
Fas

Convergence acceleration—
Adding a momentum term

Efects :
«at the beginning of training, when weights
corrections are relatively large, ensures moving
in the general direction of error decreasing,
avoiding "capture" in local minima;
sthe momentum term contributes to damping
oscillations and smoothing trajectory of
successive approximations on the error
surface.

Convergence acceleration—
Learning rate

Progressive reduction of the learning rate :
«In the initial stage, a great learning rate is
recommended: the movement on the error
surface occurs with large steps, which allows
overcoming local minima.
sAfter getting close to the minimum: reducing
the value of the learning rate allows the
stabilization of the searching process around
this minimum, reducing the risk of surpassing
it.

Convergence acceleration—
Learning rate

Principles:
«If in two successive iterations derived E/dw
retains the sign (i.e., the error E is still falling),
the learning rate should be increased to
accelerate the approach to the minimum;
«If in two successive iterations derived JE/dw
changes its sign (i.e., the error E is starting to
grow), the learning rate should be decreased to
return to the decreasing slope.

10

Convergence acceleration—
Learning rate

Learning rate adaptation:

-1 H
1=t daca [@J [@J =0

w w
-1 i
"['IH'I = o .ﬂ: daca % . % =0
o w
e (aEY
t+1 t
- d 2102 2
noo e [aw] (aw]

Convergence acceleration—
Learning rate

Learning rate adaptation:
E E

--- Local minimum === Local minimum
! |

Convergence acceleration—
Rprop learning function

RProp — Resilient Propagation

Principles:
RProp algorithm does not use values of
derivatives J E/J z,; but only their signs. It
uses one coefficient 9, for each weight z,,
which changes its value, based on the
evolution of the signs error function
derivatives.

11

Convergence acceleration—

Rprop learning function
Principles:

1 H
7" 5l dace oF | 2E =0
F &Fi &_M
1 H
5‘;:13 =41 - 5;’3 dace o8 |22 <0
&y, %y,

+1 ¥
65;5] dace oF : oF =0
&F gy &y,

Convergence acceleration—
Rprop learning function

Weights updating:

141 141 1
— sigH] [E] 5;”) daca [E] . [ﬂ] =0
AZE _ By &y &y
A

+l H
- sign[ﬁzg?]- Bg:’lj daca {;_E] . [E] =0

() (0 (2+1)
Zo =Zpy t Az .

Stopping criteria

Criterion of maximum number of
learning cycles

* Thax t00 low: capture in locala minima;

* Tmhax t00 high: network specializing on
the learning data set (over-training or
over-learning).

* Consequence: modest values for T,
and off-line tests.

12

Stopping criteria
Criterion of the test data set

The initial learning data set is divided in:
*The training data set
*The test data set

The learning stage uses the training data
set and learning is stopped when, after a
fixed number of consecutive of learning
cycles, the error on the test data set
begins to increase.

13

