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ARTIFICIAL NEURAL
NETWORKS - ANNs

THE MULTILAYER PERCEPTRON

General context

- Classical neural models that used
formal neurons were not provided
with an automatic learning
algorithm.

- The proposal of using hidden
units / neurons and learning
through error back-propagation
led to the Multilayer Perceptron
- MLP.

General context
MLP architecture

Output layer

| Hidden layer

Input layer




General context

Learning = creation of internal

representations associated to input
information.
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How? By weights adjustment.

Generalized Delta Rule

The error back-propagation
algorithm proposed by Rumelhart
and McClelland in 1986 is
sometimes called Generalized
Delta Rule (notation “Delta”
comes from the Greek letter A).

Generalized Delta Rule
Learning / Training Data Set

_Variables

Sy
— . Atable used to define the learning
1 data set for the MLP; the case for 3
inputs—x, y and z — and 1 output —
1 fixyz).

Weights initialization

Weights are initialized with random

values, usually chosen in the range
(-1, 1).




Generalized Delta Rule

Hypothesis used to apply the
algorithm

(i) the MLP-type neural network uses
hidden units / neurons;

(ii) activation functions of hidden and
output units are considered continuous and
differentiable;

(iii) if applicable, output values are scaled
within appropriate limits with respect to the
activation function.

Generalized Delta Rule
2 main stages

QForward propagation of input pattern x(m
to calculate the actual output o™,

OError back-propagation: actual output
o(M is compared to the desired one d™ and
the error term e(™ = oM - d(M js
propagated back into the network — from
the output layer to the input layer — by
adjusting weights with quantity Aw(™),
based on the least square error principle.

Generalized Delta Rule
Explanation: (@) unit j is in the output layer
(b) unit j is in the hidden layer
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Generalized Delta Rule

Clause 1

For each input — output pattern m of the
learning data set, the correction of weights
w;; - noted A(™Mw;; — for connection between
unit j and unit / in the lower layer is propor-
tional with an error term §(™ associated to
unit j:
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where 7 is a coefficient called learning rate.

Generalized Delta Rule

Clause 2
If unit j is in the output layer, the error
term §(™ is calculated based on the
deviation between the actual o™ and the
desired d™ output values and the
derivative of the activation function f of
unit j with respect to the net input for
pattern m, denoted net;(™:
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Generalized Delta Rule
Clause 2 - continued

If unit j is in the hidden layer, being linked
with synaptic connections to units K in the
output layer, the error term §(™ is
proportional to the sum of all of error terms
associated to output units k , modified by
the weights of those connections wy, and
the activation function derivative with
respect to net input net,(m:
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Generalized Delta Rule
Clause 3

The Generalized Delta Rule is based on the
principle of square error minimization; this
error describes the square deviation
between actual and desired values at the
output of the network:
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Generalized Delta Rule
Architecture

Generalized Delta Rule
Principle

The error back-propagation by

Generalized Delta Rule corresponds

to a minimization of error E by a

gradient method:
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Generalized Delta Rule
Principle - continued

If you drop the index m that shows the
number of the pattern in the learning
data set, and consider the general case of
a network with NK units on the output
layer, the error for one of the learning
pattern is:
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Generalized Delta Rule
Weights updating - v,

BE do,

Dnet
:Iok—dkl. L3

:|Ok—dk|-f'|?3é'f.k|- =
& avﬂc

vy,
=lo, —d |- ' net, o

error term 9,

) Av, =7 oo

Generalized Delta Rule
Weights updating - w;
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Generalized Delta Rule
Logistic Sigmoid function

1
Activation function: Jlx) = P

... and its derivative:
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Generalized Delta Rule
Logistic Sigmoid function - continued
Hypothesis: it is considered that the MLP uses
only logistic sigmoid — type activation functions.
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Error back-propagation
algorithm — the basic form

1. Definition of MLP network architecture: number of
units in each layer (I, J, K) and the learning data set
{xm, dM} m = 1, ..., M. Definition of the number
of training cycles: C,.y.

2. Definition of network parameters: learning rates for
weights v and w, denoted n, and n,.

3. Initialization of network weights with random
values in the range (-1, 1):

Vi =2 - random() — 1;
w; =2 - random() —1;

(G=1,.0; j=1,.,J; k=1,..K).




Error back-propagation

algorithm — the basic form
4. Weights updating:

for c =1 to C,,,, do.
form =1 to M do.
// Forward propagation in the first layer
forj=1toJdo
y;=0;
fori=1ltoldoy,=y;+w;- X
// Forward propagation in the second layer
for k =1 to K do
o, =0;
forj=1toJdoo,= 0.+ V-

Error back-propagation

algorithm — the basic form

forj=1toJdo
// Weight adjustment for the 2-nd layer
for k =1 to K do

V=Vt Aafm! — o, )'Ok Al=og) v,
// Weight adjustment for the 1-st layer
fori=1to I do

Ly fm} J
Wy =W+, T Ed}”' —oy ) oy =0y ) vy|op -0y ) ™
il

5. The network was trained on the M patterns in Cp,.,
cycles; its characteristics were embedded in the
weights v, and wj;.

Convergence acceleration
procedures

(i) optimization of the network weights
initialization,

(i) stabilization of the weights adjusting
process,

(iiN) accelerate the convergence by applying
more efficient optimization techniques
and

(iv) selecting a network architecture to
ensure best performance.




Convergence acceleration—
Weights initialization

(i) Standard procedure: initialize weights with
random, small values in the range (-1, 1)
or (-0.5, 0.5);

(ii) Russo’s rule:
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where 1 — number of input connections of

the unit.

Convergence acceleration—
Weights initialization
(iii) Nguyen — Widrow procedure :

1

define parameter: pB=07.J1

then initialize weights using: "+

where: L] =6, Lo w¥,l

Convergence acceleration—
Adding a momentum term

Alm: damping trajectory oscillations on the
surface error.

Solution: introduction within the weights
adjustment formula of a “momentum” term
proportional to movement speed (the
correction value from the previous

iteration).
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Convergence acceleration—
Adding a momentum term

Efects :
«at the beginning of training, when weights
corrections are relatively large, ensures moving
in the general direction of error decreasing,
avoiding "capture" in local minima;
sthe momentum term contributes to damping
oscillations and smoothing trajectory of
successive approximations on the error
surface.

Convergence acceleration—
Learning rate

Progressive reduction of the learning rate :
«In the initial stage, a great learning rate is
recommended: the movement on the error
surface occurs with large steps, which allows
overcoming local minima.
sAfter getting close to the minimum: reducing
the value of the learning rate allows the
stabilization of the searching process around
this minimum, reducing the risk of surpassing
it.

Convergence acceleration—
Learning rate

Principles:
«If in two successive iterations derived E/dw
retains the sign (i.e., the error E is still falling),
the learning rate should be increased to
accelerate the approach to the minimum;
«If in two successive iterations derived JE/dw
changes its sign (i.e., the error E is starting to
grow), the learning rate should be decreased to
return to the decreasing slope.
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Convergence acceleration—
Learning rate

Learning rate adaptation:
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Convergence acceleration—
Learning rate

Learning rate adaptation:
E E

--- Local minimum === Local minimum
! |

Convergence acceleration—
Rprop learning function

RProp — Resilient Propagation

Principles:
RProp algorithm does not use values of
derivatives J E/J z,; but only their signs. It
uses one coefficient 9, for each weight z,,
which changes its value, based on the
evolution of the signs error function
derivatives.
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Convergence acceleration—

Rprop learning function
Principles:
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Convergence acceleration—
Rprop learning function

Weights updating:
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Stopping criteria

Criterion of maximum number of
learning cycles

* Thax t00 low: capture in locala minima;

* Tmhax t00 high: network specializing on
the learning data set (over-training or
over-learning).

* Consequence: modest values for T,
and off-line tests.
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Stopping criteria
Criterion of the test data set

The initial learning data set is divided in:
*The training data set
*The test data set

The learning stage uses the training data
set and learning is stopped when, after a
fixed number of consecutive of learning
cycles, the error on the test data set
begins to increase.
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