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CI & ACI & A

ARTIFICIAL NEURAL 
NETWORKS - ANNs

THE MULTILAYER PERCEPTRON

General contextGeneral context
- Classical neural models that used 
formal neurons were not provided 
with an automatic learning 
algorithm.
Th  l f i  hidd- The proposal of using hidden
units / neurons and learning 
through error back-propagation 
led to the Multilayer Perceptron 
- MLP.

MLP architectureMLP architecture
General contextGeneral context

Output layer

Input layer

Hidden layer
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LearningLearning = creation of internal = creation of internal 
representations associated to input representations associated to input 
information.information.

General contextGeneral context

How? By weights adjustment.

Generalized Delta RuleGeneralized Delta Rule
The The error backerror back--propagation propagation 
algorithm proposed by algorithm proposed by RumelhartRumelhart
and McClelland in 1986 is and McClelland in 1986 is 
sometimes called sometimes called Generalized Generalized 
Delta RuleDelta Rule (notation “Delta” (notation “Delta” 
comes from the Greek letter comes from the Greek letter ))..

Generalized Delta Rule
Learning / Training Data SetLearning / Training Data Set

A table used to define the learning 
data set for the MLP; the case for 3 
inputs – x, y and z – and 1 output –
f(x,y,z).

Variables

Weights initializationWeights initialization
Weights are initialized with random 
values  , usually chosen in the range 
(-1, 1).
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Generalized Delta Rule
Hypothesis used to apply the Hypothesis used to apply the 

algorithmalgorithm
(i) the MLP-type neural network uses 

hidden units / neurons; 
(ii) activation functions of hidden and (ii) activation functions of hidden and 

output units are considered continuous and 
differentiable; 
(iii) if applicable, output values are scaled 

within appropriate limits with respect to the 
activation function.

Generalized Delta Rule
2 main stages2 main stages

Forward propagation of input pattern x(m) 

to calculate the actual output o(m).
Error back-propagation: actual output 
o(m) is compared to the desired one d(m) and o(m) is compared to the desired one d(m) and 
the error term e(m) = o(m) - d(m) is 
propagated back into the network – from 
the output layer to the input layer – by 
adjusting weights with quantity w(m), 
based on the least square error principle.

Generalized Delta Rule
Explanation: (a) unit j is in the output layer 

or (b) unit j is in the hidden layer
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Generalized Delta Rule
Clause 1Clause 1

For each input – output pattern m of the 
learning data set, the correction of weights 
wij - noted (m)wij – for connection between 
unit j and unit i in the lower layer is propor-unit j and unit i in the lower layer is propor
tional with an error term j

(m) associated to 
unit j: 

where  is a coefficient called learning rate. 

If unit j is in the output layer, the error 
term j

(m) is calculated based on the 
deviation between the actual oj

(m) and the 
desired dj

(m) output values and the 

Generalized Delta Rule
Clause 2Clause 2

j
derivative of the activation function f of 
unit j with respect to the net input for 
pattern m, denoted netj

(m):

If unit j is in the hidden layer, being linked 
with synaptic connections to units k in the 
output layer, the error term j

(m) is 
proportional to the sum of all of error terms 

Generalized Delta Rule
Clause 2 Clause 2 -- continuedcontinued

proportional to the sum of all of error terms 
associated to output units k , modified by 
the weights of those connections wjk and 
the activation function derivative with 
respect to net input netj

(m):
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The Generalized Delta Rule is based on the 
principle of square error minimization; this 
error describes the square deviation 

Generalized Delta Rule
Clause 3Clause 3

between actual and desired values at the 
output   of the network:

Generalized Delta Rule
ArchitectureArchitecture

The error back-propagation by 
Generalized Delta Rule corresponds 
to a minimization of error E  by a 
gradient method:

Generalized Delta Rule
PrinciplePrinciple

gradient method:
w t + 1 = w t –   E (w t ) = w t –   w t

i.e.:
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If you drop the index m that shows the 
number of the pattern in the learning 
data set, and consider the general case of 
a network with NK units on the output 

Generalized Delta Rule
Principle Principle -- continuedcontinued

a network with NK units on the output 
layer, the error for one of the learning 
pattern is:

Generalized Delta Rule
Weights updating Weights updating -- vvjkjk

error term δk

Generalized Delta Rule
Weights updating Weights updating -- wwijij

error term δk

error term δj
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Activation function:

… and its derivative:

Generalized Delta Rule
Logistic Sigmoid functionLogistic Sigmoid function

Hypothesis: it is considered that the MLP uses 
only logistic sigmoid – type activation functions.

Generalized Delta Rule
Logistic Sigmoid function Logistic Sigmoid function -- continuedcontinued

1. Definition of MLP network architecture: number of 
units in each layer (I, J, K) and the learning data set 
{x(m), d(m)} m = 1, ..., M. Definition of the number 
of training cycles: Cmax.

2. Definition of network parameters: learning rates for 

Error back-propagation 
algorithm – the basic form

p g
weights v and w, denoted 1 and 2  .

3. Initialization of network weights with random 
values   in the range (-1, 1):

vjk = 2  random( ) – 1;
wij = 2  random( ) – 1;

(i = 1,…,I;  j = 1,…, J; k = 1,…,K). 
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4. Weights updating:

for c = 1 to Cmax do.
for m = 1 to M do.

// Forward propagation in the first layer
for j  1 to J do

Error back-propagation 
algorithm – the basic form

for j = 1 to J do
yj = 0;
for i = 1 to I do yj = yj + wji  xi

// Forward propagation in the second layer
for k = 1 to K do

ok = 0;
for j = 1 to J do ok = ok + vkj  yj

for j = 1 to J do
// Weight adjustment for the 2-nd layer

for k = 1 to K do

Error back-propagation 
algorithm – the basic form

// Weight adjustment for the 1-st layer
for i = 1 to I do

5. The network was trained on the M patterns in Cmax
cycles; its characteristics were embedded in the 
weights vjk and wij.

Convergence acceleration Convergence acceleration 
proceduresprocedures

(i) optimization of the network weights 
initialization,

(ii) stabilization of the weights adjusting 
process,

(iii) accelerate the convergence by applying 
more efficient optimization techniques 
and

(iv) selecting a network architecture to 
ensure best performance. 
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Convergence accelerationConvergence acceleration––
Weights initializationWeights initialization

(i) Standard procedure: initialize weights with 
random, small values in the range (-1, 1) 
or (-0.5 , 0.5);

(ii) Russo’s rule: 

where I – number of input connections of
the unit.

(iii) Nguyen – Widrow procedure :

define parameter:

Convergence accelerationConvergence acceleration––
Weights initializationWeights initialization

define parameter:

then initialize weights using:

where:

Aim: damping trajectory oscillations on the 
surface error.

Solution: introduction within the weights 
adjustment formula of a “momentum” term 

Convergence accelerationConvergence acceleration––
Adding a momentum termAdding a momentum term

adjustment formula of a momentum  term 
proportional to movement speed (the 
correction value from the previous 
iteration).

or:
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Efects :
•at the beginning of training, when weights 
corrections are relatively large, ensures moving 
in the general direction of error decreasing, 

Convergence accelerationConvergence acceleration––
Adding a momentum termAdding a momentum term

in the general direction of error decreasing, 
avoiding "capture" in local minima; 
•the momentum term contributes to damping 
oscillations and smoothing trajectory of 
successive approximations on the error 
surface. 

Progressive reduction of the learning rate :
•In the initial stage, a great learning rate is 
recommended: the movement on the error 
surface occurs with large steps  which allows 

Convergence accelerationConvergence acceleration––
Learning rateLearning rate

surface occurs with large steps, which allows 
overcoming local minima. 
•After getting close to the minimum: reducing 
the value of the learning rate allows the 
stabilization of the searching process around 
this minimum, reducing the risk of surpassing 
it.

Principles:
•If in two successive iterations derived E/w
retains the sign (i.e., the error E is still falling), 
th  l i  t  h ld b  i d t  

Convergence accelerationConvergence acceleration––
Learning rateLearning rate

the learning rate should be increased to 
accelerate the approach to the minimum; 
•If in two successive iterations derived E/w
changes its sign (i.e., the error E is starting to 
grow), the learning rate should be decreased to 
return to the decreasing slope.
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Learning rate adaptation:

Convergence accelerationConvergence acceleration––
Learning rateLearning rate

Convergence accelerationConvergence acceleration––
Learning rateLearning rate
Learning rate adaptation:

L l i iLocal minimum Local minimum

RProp – Resilient Propagation

Principles:

Convergence accelerationConvergence acceleration––
RpropRprop learning functionlearning function

RProp algorithm does not use values of 
derivatives  E/ zps but only their signs. It 
uses one coefficient δps for each weight zps
which changes its value, based on the 
evolution of the signs error function 
derivatives.
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Principles:

Convergence accelerationConvergence acceleration––
RpropRprop learning functionlearning function

Weights updating:

Convergence accelerationConvergence acceleration––
RpropRprop learning functionlearning function

Stopping criteriaStopping criteria
Criterion of maximum number of

learning cycles

• Tmax too low: capture in locala minima;
• Tmax too high: network specializing on max g p g

the learning data set (over-training or 
over-learning).

• Consequence: modest values for Tmax
and off-line tests.
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The initial learning data set is divided in:
•The training data set 
•The test data set 

Stopping criteriaStopping criteria
Criterion of the test data setCriterion of the test data set

The learning stage uses the training data 
set and learning is stopped when, after a 
fixed number of consecutive of learning 
cycles, the error on the test data set 
begins to increase. 


